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Introduction

What types of environmental flows do we hope to analyze with this method?
e Highly non-linear, multi-scale flows in oceans, lakes, and rivers
e Flows that are well approximated by the variable density incompressible Navier-Stokes equations

e Examples: internal waves, coastal plumes, density currents in lakes, flows in branched estuarine

slough networks, flows past highly complex topography

What are the issues involved?
e Complex and often sparse geometries
e Large ranges in spatial and temporal scales

e Moving fronts and highly complex mixing zones

What do we hope to provide with such a tool?
e An enhanced ability to interpret and extend the results of field and laboratory studies

e A predictive tool for both engineering and science



Variable Density Incompressible Navier-Stokes Equations

Momentum balance

\Y%
Ut + (0 - V)u = ——p+g+1/A17f
p
e Divergence free constraint
V.-u=0

Density conservation

pt +u-Vp=0

Passive scalar transport

ct +4-Ve=V-(kcVe)+ He

Note that we do not employ Boussinesq or hydrostatic approximations.



Solution Strategy: Temporal Discretization

We build on a classic second-order accurate projection method (Bell, Colella, Glaz,
JCP 1989). We split the momentum equations into three pieces:
e Hyperbolic: 4t + (4 - V)i = H

where we exactly enforce a divergence free state for the advective velocities, and compute the

advective term explicitly
e Parabolic: wy = vAu+ S

which we solve implicitly for a predictor velocity
e Elliptic: V- %Vp =V (—(u- -V)d+vAu)

which we solve implicitly for pressure, and subsequently correct the predictor velocity

To update the scalar equations we do similar hyperbolic and parabolic

decompositions.



Solution Strategy: Spatial Discretization Using Embedded Boundaries (EB)

For the bulk of the flow, O(n?) cells in 3D, we compute on a regular Cartesian grid.
We use an embedded boundary description for the O(n?) control-volumes (in 3D)
that intersect the boundary.

Advantages of underlying rectangular grid:

e Grid generation is tractable, with a straightforward coupling to block-structured
adaptive mesh refinement (AMR)

e Good discretization technology, e.g. well-understood consistency theory for finite
differences, geometric multigrid for elliptic solvers.



Embedded Boundary Control Volumes

Three example irregular cells are shown below. Green curves indicate the intersection of the exact
boundary with a Cartesian cell. We approximate face intersections using quadratic interpolants.

e For each control volume we compute: volume fractions, area fractions, centroids, boundary
areas, and boundary normals. These are all we need for discretizing our conservation laws.

e Unlike typical discretization methods, the EB control volumes naturally fit within easily
parallelized disjoint block data structures.

e Efficiently permits dynamic coarsening and refinement of highly complex geometry as a
simulation progresses.

e EB’s are second-order accurate. Stair-step methods are first-order accurate for area error, and
zero-order accurate for perimeter and boundary normal errors.



Block-Structured Adaptive Mesh Refinement

In adaptive methods, one adjusts the computational effort locally to maintain a uniform level of
accuracy throughout the problem domain.
e Refined regions are organized into rectangular patches. Refinement is possible in both space

and time.

e AMR allows the simulation of a range of spatial and temporal scales. Capturing these ranges is
critical to accurately modeling multi-scale transport complexities such as boundaries, fronts,

and mixing zones that exist in natural environments.

e Using EB AMR finite-volume methods we maintain conservation and second-order accuracy.



EB Grid Generation Examples

e Madracis Mirabilis Coral (thanks to Dr. Jaap A. Kaandorp for the CT scan data)




EB AMR Grid Generation Examples
e Northern San Francisco Bay with AMR (using USGS DEM data)
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Results: 3D Convergence Study

e Below is a 3D convergence study for a Re = 100, rotational flow past a complex geometry:

Base Grids 16-32 Rate 32-64

L1 Norm of U Velocity Error 1.69e-2 | 2.32 | 3.39e-3
L2 Norm of U Velocity Error 5.28e-2 | 1.76 | 1.55e-2
L1 Norm of W Velocity Error || 1.48e-2 | 2.29 | 3.03e-3
Lo Norm of W Velocity Error || 4.69e-2 | 1.83 | 1.32e-2
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Results: Breaking Internal Waves on a Slope

Flow is inside a 0.5m tall, by 3m wide tank, with an 8:1 slope starting 1m from
the left side

Below left is the initial density distribution (blue is light fluid, red is heavy fluid),
below right is the initial conditions for a passive scalar

Density ratio of light fluid to heavy fluid is 1000/1030, and our pycnocline is a
step-function. The pycnocline is perturbed on the left side of the tank.

Thanks to Prof. Fringer of Stanford University for this test problem
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Breaking Internal Wave on a Slope (Density left, Scalar right)
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Results: Breaking Internal Waves on a Slope: Smoothed Pycnocline

: —
1 =77 r— —|
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Results: Lock-Exchange with AMR

e Flow is inside a 0.5m tall, by 3m wide tank.

e On the left side of the tank we start with light water, on the right is heavy
water. The density ratio of light fluid to heavy fluid is 1000/1030.

e On the following lock-exchange slides, the lower figure is a zoom in on the
center region of the tank.
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?

Answer: We can add computational effort only where we need it!
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Conclusions and Future Work

e We now have a second-order accurate incompressible Navier-Stokes code
that has been validated in 2D and 3D.

e Our AMR version is showing reasonable results and is under review to

ensure second-order accuracy.

e Future Work:
— Field scale applications

— Fourth-order accuracy (see my JCP paper with P. Colella).
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